本日は待ちに待ったソフトマックス回帰の実装です。ロジスティックの兄さんのような存在のロジスティック。出力が確率の多値分類になっただけです。この記事では数式をゴリゴリ計算していこうと思います。
Softmax function







参考
- https://en.wikipedia.org/wiki/Softmax_function
- https://www.kdnuggets.com/2016/07/softmax-regression-related-logistic-regression.html
- http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/
- https://math.stackexchange.com/questions/1428344/what-is-the-derivation-of-the-derivative-of-softmax-regression-or-multinomial-l
- https://houxianxu.github.io/2015/04/23/logistic-softmax-regression/