今回はたまに聞くであろうGLM、すなわち、一般化線形回帰についてです。回帰といえば今まで線形回帰とかちょろっとやりました。せっかくなので回帰についてちょっとだけ復習してから本題に入りましょう。 上のデータを回帰することを考えます。今まで線形回帰ばかりしてきました。しかし、今回のデータは線形っぽくない。このような時はどうすればいいのか?一般化線形モデルの登場です。
- データが線形ではないとき
- 誤差がでない
- がカテゴリカルとかだったら
- 線形予測子
- リンク関数
- 確率分布
- 説明変数の線形モデル
- 線形モデルに移す関数
- 目的変数の従う分布
これを用いようとするとPythonよりもRがメジャーな選択肢になりますが、僕はPython派なのでこっちを使います。以下がコードになります。 北大のレジュメの問題はRで解かれておりこれをPythonで解いた結果近い値が得られたのでうまく回帰できたと思います。しかしもう世の中はニューラルネットワークなのか、、、、
でわ